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Abstract: With the COVID-19 outbreak hitting the world, the frequency and severity of port con-
gestion caused by various factors are increasing, challenging the stability of international supply
chains. Thus, it is necessary to conduct an in-depth study on congestion risks to reduce their adverse
impacts on congestion. Although traditional criticality analysis techniques may be capable of ranking
port congestion risk in common scenarios, new risk analysis methods are urgently required to tackle
uncertainty along with the COVID-19 pandemic. This paper develops a methodology designed for the
identification and prioritization of port congestion risk during the pandemic. First, a novel congestion
risk assessment model is established by extending the risk prioritization index (RPI) suggested by
failure mode and effects analysis (FMEA). Next, the combination of fuzzy Bayesian reasoning, AHP
and the variation coefficient method is incorporated into the model in a complementary way to
facilitate the treatment of uncertainty and quantitative analysis of the congestion under the different
influence of risk factors in ports. Finally, the mode introduces a set of risk utility values for calculating
the RPI for prioritization. A real case study and a sensitivity analysis were carried out to illustrate and
validate the proposed model. The results proved that the applied method is feasible and functional.
In the illustrative example, the top three risk factors are “Interruption of railways/barges services”,
“Skilled labor shortage” and “Shortage of truck-drivers/drayage truck”. The findings obtained from
this paper could provide useful insights for risk prevention and mitigation.

Keywords: the COVID-19 pandemic; port congestion risk; risk parameter structure-based FMEA;
fuzzy belief rule-based Bayesian network (FBRB-BN); AHP; the variation coefficient method

1. Introduction

Accounting for approximately 90% of goods transportation between countries [1,2],
maritime transportation is regarded as an important means to keep global trade flowing
and ensure the stability of supply chains. Since ports are an accelerator of high-quality
development, the business continuity of ports is vital for the modern world economy and
trade. However, the COVID-19 pandemic hit the world and triggered an unprecedented
health and economic crisis, upending the landscape for maritime transport and trade [3].
Against this background, the frequency and severity of port congestion, stimulated by a
variety of factors are rising, severely challenging the continuity of shipping services. Thus,
all the stakeholders in the maritime industry must step up to the congestion challenge.

Port congestion not only leads to longer waiting times and lower service levels before
berthing, but also brings long-term effects such as reduced income, increased risk of debt
and bankruptcy and declined competitiveness. Therefore, it is an important problem both
from the perspective of efficiency and economy [4]. Implementing necessary management
to mitigate even avoid congestion has become more widely known in recent years. Nor-
mally, strategies proposed by researchers for port congestion management can be divided
into reactive strategies and proactive strategies. The former are applied after congestion
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emerged, and typical examples of these are evolution analysis of port congestion [5,6], and
congestion governance modes [4,7] or measures [8,9]. The latter refers to the identification
and assessment of congestion or congestion risk before it occurs. Many techniques have
been developed and applied to forecast and evaluate port congestion, such as simulation
technology [10], algorithms based on AIS Data [11,12], and Markov chain analysis [13].
Moreover, the use of risk assessment as the solution to decision-making of operation man-
agement and port investment has been recognized by researchers with various backgrounds
and verified effectively by real examples. These studies could be classified into network-
based cascading congestion risk models [14] and traditional risk models [15,16] where risk
was defined as the combination of probability and impact. Possible limitations of such
traditional risk models would be that, for one thing, they failed to address the uncertainty
existing in common responses from interviewees; for another, it described risk based on
only two types of risk parameters. This may neglect or underestimate the likelihood of
a disruption of the type and scale of the COVID-19 outbreak, thus providing insufficient
information for decision making. Frequent congestion during the pandemic implied that
the maritime transport of the future needs to be calibrated according to risk exposure and
risk management, anticipating further enhancement. Last but not least, there are some
studies [17,18] focused on robustness and recovery planning for ports, in which both the
proactive and reactive disruption management for ports were taken into account.

Undoubtably, an adequate risk management procedure is of importance to prevent
and reduce congestion risk as well as strengthen resilience-building of maritime transport.
On the one hand, the identification and analysis of relevant risk exposures, vulnerabilities
and potential losses are essential for risk prevention/mitigation [19]. On the other hand,
the disruption caused by the COVID-19 pandemic will exert a lasting impact on shipping
and trade. Additionally, port congestion will change with time and external conditions,
resulting in fuzzy and incomplete data for estimating and managing risks. This requires a
flexible and effective quantitative risk analysis model, which can not only provide insight
into the congestion risk status of ports with incomplete evidence, but also update the
existing information when new data are available [20]. This paper aims to answer the
following three research questions:

RQ1: What are the risk factors contributing to port congestion during the pandemic?
RQ2: What risk parameters should be considered in port congestion risk assessment?
RQ3: How to realize flexible and accurate congestion risk assessment?

The rest of this paper is organized as follows: Section 2 reviews the research work
related to port congestion and the application of Fuzzy Rule-Based Bayesian Network
(FRBN) in risk assessment. Section 3 is the methodology for establishing a generic port
congestion risk assessment framework, including congestion risk identification, a novel
congestion risk assessment model and model validation. A real case of the congestion risk
of the Los Angeles–Long Beach ports and sensibility analysis are used to demonstrate and
validate the methodology in Section 4. Finally, Section 5 concludes the work.

2. Literature Review

In this section, the prior research relating to port congestion management is first
reviewed, followed by the introduction of the quantitative analysis of port congestion
concerned, the application of Fuzzy Rule-Based Bayesian Networks (FRBN), and finally the
summary of research gaps that remain to be addressed appropriately. It lays emphasis on
the lessons learnt and the inadequacies in the literature, thereby paving the way forward in
our study.

2.1. Previous Research on Port Congestion Management

Port congestion is a phenomenon which is relevant to delays, queuing, extra voyage
and dwell time of ships and cargo at the port [21]. Most scholars [6,13,22] deemed that
congestion occurs when maritime participants clash with others in the utilization of port
resources. In other words, port congestion is significantly associated with the entire
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maritime supply chain (MSC) [23]. Considering the impact of congestion on time and costs,
such as excessive waiting times and high demurrage or additional congestion surcharges,
port congestion management has received increased attention in recent years.

There is some research aiming to reduce local congestion at ports. For example,
Zhen [24] studied the yard template planning problem in the context of yard truck in-
terruptions. In their study, a mixed-integer programming model and a Squeaky Wheel
Optimization based meta-heuristic were developed for minimizing the total expected travel
time of moving containers around the yard. Concentrating on berth congestion reduc-
tion, Iris et al. [25] proposed novel Generalized Set Partitioning (GSPP) formulations for
solving the integrated Berth Allocation and quay Crane Assignment Problem (BACAP).
Iris et al. [26] formulated and solved a mathematical model for the flexible containership
loading problem for seaport container terminals. Instead, Saeed, Song and Andersen [4]
and Xu, Li, Liu and Yang [9] discussed the measures for mitigating port congestion with
considering other stakeholders’ engagement. Compared to after-the-fact management, the
identification, assessment and forecasting of congestion are preferred by academic research.
For instance, Oyatoye et al. [27] utilized queuing theory to detect that congestion in the
Nigeria port is majorly caused by the operational inefficiency of the port managers and
operators coupled with long years of infrastructural developmental neglect. Stergiopoulos,
Valvis, Mitrodimas, Lekkas and Gritzalis [14] developed a risk-based interdependency
analysis method that can identify the large-scale traffic congestion between interrelated
ports and routes in the shipping network. Yeo, Roe and Soak [10] used the AWE-SIM
simulation program to forecast the potential of congestion at the Busan port owing to the
increased cargo volume. By applying Markov Analysis, Pruyn, Kana and Groeneveld [13]
developed a probabilistic prediction model for days of waiting time due to port congestion,
which could provide a decision-making basis for shippers and carriers to choose cargo
loading and unloading ports. Based on AIS data, Li [12] and AbuAlhaol, Falcon, Abiel-
mona, Petriu and Ieee [11] developed different algorithms for evaluating congestion and
predicting the behaviors of ports in future months, respectively. According to results from
the above research, factors caused congestion could be listed in general headings as follows:
socio-economic factors, adjustments in the market strategies of maritime participants, low
productivity in port, adverse weather and accidents. The existence of such factors increases
the uncertainty of port operation. Additionally, such uncertainty has been intensified by
the COVID-19 pandemic [28].

The sudden outbreak of COVID-19 pandemic has rapidly affected all elements of the
maritime supply chain roughly at the same time, and unprecedented chaos has conse-
quently been brought about in global ports and the shipping industry. Millefiori et al. [29]
proposed a maritime mobility index for analyzing the short-term effects that the COVID-19
pandemic and its containment measures had on the shipping industry. The result from their
research shows that an unprecedented drop in maritime mobility across all categories of
commercial shipping in the early days of the COVID-19. According to the evidence from 14
ports in China, Xu et al. [30] detected that the traditional peak season for shipping of import
throughput is still maintained, while export throughput no longer has a clear difference
between low and peak seasons. After the temporal surges driven by the large increase
in trade of medical pharmaceuticals and mode substitution from air to maritime [31], the
global shipping industry is confronted with another demand peak brought about by the
economic recovery. For the shake of strengthening the supply chain, some North American
countries have witnessed a clear trend toward restocking inventories at distribution centers
and stores since September 2020 despite the pandemic still accelerating there [32]. During
the epidemic, the imbalance of port productivity and shipping demand, as well as the insta-
bility of shipping routes, were further highlighted, and consequently the trend of goods and
ships arriving at the port in the same time becomes more and more obvious. However, the
operational capacity of most ports is lower than their theoretical capacity [6]. The impact
of the pandemic on the economy, society, and port industry far exceeds that of “SARS” in
2003. Chen et al. [18] emphasized the importance of the robustness and sustainability of the
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port logistics system. By formula derivation and analysis, they obtain an optimized and
robust system which can minimize the economic loss caused by the outbreak. The duration
and severity of the epidemic in the future is still a matter of uncertainty, which outlines the
importance of effectively managing the risk of port congestion.

2.2. Quantitative Analysis of Port Congestion Risk

Port congestion has been regarded as one of the most prominent risks in the shipping
industry [15]; therefore, some research pays more attention to the assessment of risk factors
which have a noteworthy impact on the efficiency of port operation.

Park et al. [33] discussed how the operations of an excursion ship, i.e., an increase in
harbor traffic volume, affected the Busan North Port’s marine traffic status by applying the
marine traffic assessment indexes and IWRAP MkIImodel. Based on the relative impor-
tance, Bolat, Kayisoglu, Gunes, Kızılay and Ozsogut [16] ranked a list of factors contributing
to port congestion by AHP. Potgieter, Goedhals-Gerber and Havenga [15] proposed that the
risk severity of port congestion should be measured using two measurements, namely risk
frequency (L), and risk impact (C). In their study, the risk impact is defined as the number
of hours delayed (scheduling impact) and forms a risk matrix with the risk frequency
to evaluate the risk level of weather- and system-related port congestion at Cape Town
container terminal. The combination of L and C has been proved a simple and effective way
to represent risk, which could be found in other aspects of port risk studies, such as safety
and security analysis [34], operational risk [20] and disruption risk [1]. However, risk is a
complex and interdisciplinary concept involving many parameters such as probability, con-
sequence, uncertainty and scenario [35]. Only considering the parameters L and C will lead
to the loss of useful information in risk analysis. Moreover, port congestion will not only
lead to more and more queues, but also more or less hidden congestion costs even decline
in competitiveness [5]. Putting all aspects under the umbrella of ‘consequence’ might add
the difficulty of risk assessment and encourage the behavior of careless assessment [36,37].

With the deepening of risk management in the shipping industry, visibility has become
another issue of maritime transportation. Good visibility plays a vital role in the operational
efficiency, productivity and effective planning of the transportation system [38]. Improving
visibility is the inevitable trend of future development. For example, Maersk and IBM
jointly developed a blockchain project, Trade Lens, which can connect all the partners in a
maritime supply chain, thereby bring end-to-end supply chain visibility for shippers and
consignee. AIS systems, the Internet of things (IOT) and blockchain technology promote
information sharing among maritime supply chain participants, making it possible to
monitor the status of ship motion and cargo shipment and facilitate the evacuation and
delivery of cargo out of the port. This is of great significance for improving the transparency
and stability of the maritime transportation system, as well as preventing and alleviating
port congestion. However, according to the literature collected by the author, visibility has
not been considered in risk assessment of port congestion yet.

2.3. Fuzzy Rule-Based Bayesian Networks Used in Maritime Risk Assessment

Owing to its transparency and easiness, failure modes and effect analysis (FMEA) has
been widely applied in risk analysis. However, it still shows limitation in addressing cogni-
tive uncertainty in risk assessment. Furthermore, it may occur that different combinations
of three risk parameters (i.e., likelihood of occurrence L, the severity of consequence C,
and the probability of the failure being undetected P) share the same value of risk priority
number (RPN). As a coupled method, Fuzzy Rule-Based Bayesian Networks were usually
introduced into FMEA for their unique superiorities in fully expressing experts’ subjective
judgement and modeling the non-linear relationship between different variables.

Yang et al. [39] innovatively developed a fuzzy rule-based Bayesian Reasoning (FuR-
BaR) approach for supporting safety-based decision making during tandem offloading
operation in port. The results from their study indicated that FuRBaR can effectively
manage the uncertainty stemming from human knowledge in risk assessment. However,
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the application of FuRBaR was affected by the rationality of belief rule base (BRB). Thus,
different improvement mechanisms were put forward by some scholars. For example,
Alyami, Lee, Yang, Riahi, Bonsall and Wang [34] proposed a Fuzzy Rule-Based Bayesian
Network (FRBN) for evaluating the criticality of hazard events (HEs) in a container terminal,
where a more rigorous and explicit proportion method was used to construct a reasonable
structure of BRB. Wan et al. [40] suggested that considering the relative importance of
the risk attributes when developing a rule representation will be helpful to improve the
robustness of BRB in FRBN. In their research, a fuzzy belief rule-based Bayesian network
(FBRB-BN) approach was proposed, where AHP was employed to determine all the degree
of beliefs (DoBs) of rules rationally in a BRB. However, AHP has a certain subjectivity which
inevitably generates weight deviation, consequently showing drawbacks in scientifically
reflecting the real state of the risk. One realistic way to solve this problem is the compre-
hensive weight method where AHP and the variation coefficient method are integrated in
a complementary manner [41].

2.4. Research Gap

Though the above studies have provided useful insights into the quantitative analysis
of port congestion, as well as in maritime risk assessment, there are still some research gaps
which need to be filled:

(1) From the above literature review, there is no research on port congestion risk assess-
ment under the COVID-19 pandemic despite it being very important.

(2) For one thing, traditional risk assessment methods employed in previous studies;
for example, the risk matrix cannot deal with the epistemic uncertainty caused by
inaccurate congestion risk data. For another, the application of Fuzzy Rule-Based
Bayesian Networks (FRBN) for congestion risk assessment is still in its infancy.

(3) Problems of congestion in ports are multi-dimensional or rather complex [21]; how-
ever, previous quantitative analysis studies on port congestion risk only concentrated
on the likelihood or the severity of consequences, leaving the other features of risk
not being fully explored.

Given the existing gaps as well as advantages of prior studies, this paper takes the
port congestion risk under the COVID-19 pandemic as the research object and proposes a
novel congestion risk assessment model. This is achieved by (1) determining the research
boundary of port congestion risk, thereby identifying all congestion risk factors assisted
by congestion cases and available information in the literature review; (2) constructing
a risk parameter structure for measuring the risk status of port congestion risk based on
FMEA; and (3) using the combination of AHP and the variation coefficient method to assign
subjective belief degrees to the subsequent parts of fuzzy rules in FRBN.

3. Methodology for Modeling Port Congestion Risk during the COVID-19 Pandemic

Generally, the choice of methods for risk assessment should be driven by the nature
of the research problem, such as data availability (exact or incomplete data), the degree
of interrelationship complexity, etc. [40]. Given no detailed list of/exact data pertaining
to port congestion risk during the pandemic exists, congestion risk factors need to be
identified and most of the risk attributes (e.g., severity and likelihood) amount have to be
estimated. However, highly subjective judgments could be vague and uncertain [36]. In
addition, port congestion will change with time and external conditions [12], especially
considering the prevalence of a highly transmissible strain. Thus, the results obtained from
risk assessment should be real-time and be upgraded with new information.

In view of these, we start by identifying congestion risk factors using the definition
of port congestion risk, literature review and typical congestion cases. Then, a novel
congestion risk assessment model is developed, in which the RPI suggested by FMEA
is extended first, following the utilization of a fuzzy belief rule-based Bayesian network
(FBRB-BN) for tackling vagueness in expert judgment and modeling the relationship
between different variables and achieving risk inference. Inspired by [41–43], AHP and the
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variation coefficient method are employed to further reduce the uncertainty from subjective
judgements when establishing FBRB. Additionally, the RPI values for risk ranking could be
computed from utility values and the marginal probability obtained from FBRB-BN. The
detailed steps of the proposed methodology are depicted as Figure 1.

Figure 1. The main steps for port congestion risk assessment.

3.1. Identify Risk Factors of Port Congestion under the COVID-19 Pandemic

To acquire more accurate and inclusive risk identification results, the concept of
congestion risk should be defined first. Normally, risk is regarded as the combination of
hazard, consequence and uncertainty in most studies related to port or maritime risk. In
addition, many ports around the world have been suffering from congestion caused by
external or internal disruption after the COVID-19 outbreak hit the world; see Table 1.
Inspired by the work of [44], this paper defines the port congestion risk as potential risk
factors that may lead to congestion or worsen the current situation of port congestion
during the pandemic.

Table 1. Examples and their reasons for port congestion.

Ports Reasons for Congestion

Los Angeles/Long Beach Labor shortage; the increasing number of ships calling at port; lack of yard space; railhead congestion, etc.
Rotterdam Peak caused by ULCV; ships off schedule because of Suez Canal congestion

Yantian Production shutdown due to the pandemic; lower efficiency owing to more strict containment measures; inland
transportation congestion

Nan sha/Hongkong Closure of Yantian port and shift of all traffic to ports in South China
Ningbo Weather conditions; shut down due to the pandemic

Durban port Hacker intrusion; apacity decline in hinterland transportation
Port Kelang Cascading congestion; bad weather
Chattogram Trucker strike; container shortage
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From Table 1, the risk factors of port congestion can be divided into external factors
(EFs) and internal factors (IFs) here. External factors refer to the risk sources of congestion
from members of the maritime supply chain or the external environment of port operation.
Additionally, internal factors originate from the bottlenecks at various sections of the port,
which are mainly associated with manpower, equipment, facilities, procedure, etc. Based
on the above discussion and the available information presented in Section 2, a list of
congestion risks could be identified—see Table 2.

Table 2. Risk Factors of port congestion during the COVID-19 pandemic.

Group Risk Factor Risk Factor Node

External factor

Cargo growth EF_1
Vessel bunching EF_2

Larger ships calling EF_3
Directional imbalance of container trades EF_4

Undeveloped ground access system EF_5
Interruption of railways/barges services EF_6
Shortage of truck-drivers/drayage truck EF_7

Chassis shortages, supply imbalances and dislocations EF_8
The reluctance of consignees to collect cargoes EF_9

Network security EF_10
Industrial action or strikes EF_11

Adverse weather EF_12
Traffic accidents in the port area EF_13

Internal factor

Skilled labor shortage (dockworkers or warehouse workers) IF_1
Inefficient and insufficient port infrastructure/equipment IF_2

Lack of yard space or stockpile IF_3
Poor management on container stacks IF_4
Restricted documentation procedures IF_5

Inconsistent hours across terminals IF_6

3.1.1. External Factors Contributing to Port Congestion

External factors contributing to port congestion, firstly, are the continuous growth
of freight volumes associated with the transformation of consumption patterns and the
economic recovery in post-pandemic. A continuing surge of freight volume results in
the number of ships calling at ports exceeding the port’s capacity level permits, where
congestion arises [4]. Secondly, the pandemic disrupts the normal shipping schedule;
vessels consequently arrive in port at the same time, which leads to further congestion and
delays [45]. Thirdly, the ratio of lager vessels in the deployed container vessels continues to
increase despite the pandemic [32]. The large-scale ships, especially Ultra Large Container
Vessels (ULCVs), reduce the frequency of ships calling at the port while container volume
surges significantly accompanied by this decline in port calls. Thus, the peak times of
berths, yards and gates in the port are increasing, which further reduces the port’s revenue
and accentuates the degree of congestion.

Another source of congestion is directional imbalance of container trades due to the
COVID-19 pandemic, especially in the Transpacific and Asia–Europe–Asia trade lanes [28].
Containers are not available in export-oriented areas; consequently, goods have been
stockpiled at ports, terminals, and elsewhere for several weeks, while in import-oriented
areas, an overrun of empty containers is eating up valuable yard space. Port congestion is
also relevant to the inefficiency of the inland transportation system. Capacity “tightness”
or congestion in railways and highways from the port to the inland, or the temporary
suspension of rail and barge services, could slow down the evacuation and delivery of
cargo out of the port [21]. Moreover, shortage of drayage truck or truck-drivers or chassis
may further worsen the fluent flow of cargo through the port [5,46]. In addition, the
reluctance of consignees to collect cargoes may occur because of additional fees (e.g.,
Container Excess Dwell Fees) and the complex cross-border crossing [32]. Alongside these
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factors, network security (e.g., hacker intrusion or network fraud) seems an additional
factor of congestion. Finally, port congestion can also happen due to external factors more
or less beyond the control of the actors, namely industrial action or strikes, bad weather,
and accidents [4]. On the one hand, industrial action or strikes may disrupt the normal
operation of port business and shut down the port [1]. On the other hand, adverse weather
(e.g., typhoon and thick fog) or traffic accidents may temporarily close the port, resulting in
vessels lining up outside.

3.1.2. Internal Factors of Port Congestion

During the pandemic, the internal bottlenecks at various sections of the port used for
berthing, cargo unloading/loading, storage, and transfer [6], were underscored. For one
thing, fewer workers could be on shift at a given time due to the social distancing mandates
or continuous infection, which created a bottleneck at the docks or warehouses, resulting in
a direct decline in port productivity. For another, insufficient or poorly maintained infras-
tructure/port handling equipment capacity contributed to delays in the loading/unloading
of containers [15]. Limited yard or stockpiling space also impedes the process of cargoes
discharging from ships. In addition, poor management on container stacks means unex-
pected shifting and sorting of containers, which may cause a certain degree of delay. For
instance, when truckers come to pick up import containers as the container yard congestion
builds, there could be multiple movements/sorts within the terminal before the containers
are received [46].

In addition, with the increasing health risk of international goods, ports had to im-
plement more stricter declaration, quarantine and disinfection measures for goods and
ships arriving at or passing by the ports in high-risk regions. Cumbersome licensing or
documentation procedures prolong the time each vessel spends at the port and the time
cargo takes to move through the port, thereby aggravating congestion intangibly [16].
Finally, congestion can happen at the gate systems where cargo enters or leaves the port in
the case of truck use. Inconsistent hours across terminals may take up the majority of the
truck fleet, which adds to congestion [46].

3.2. Establishment of an FBRB for Modeling Port Congestion Risk
3.2.1. Risk Parameter Set Based on FMEA

Given the difficulty for experts of giving reliable judgements when the target object is
excessively general or complicated [35], the extensions of the C (the severity of consequence)
and P (the probability of the failure being undetected) parameters in FMEA are considered
in this paper when constructing the FBRB for port congestion risk assessment.

Besides time loss and thus a higher generalized cost, congestion implies increasing
difficulty in the port’s operation management and the decline in the port’s competitive
power. On the one hand, when congestion occurs, the port authority has to maximize
the organization of terminal operation machinery and personnel for implementing an
emergency response plan, which adds evitable total cost and operational difficulty. On
the other hand, port congestion may exert a long-term impact on market power, thereby
resulting in the loss of goods or vessel calls to the port [47]. Therefore, this study subdivided
consequences into time impact (CT), additional cost (CC) and competitive impact (CI).
Time impact usually refers to the amount of additional time or delays experienced by
ocean carriers or cargo owners [15], i.e., the average waiting time of ships or the average
dwell time of goods in port. Additional costs could be understood as costs associated with
port operation and management when congestion occurs, for instance, fees spent in extra
manpower or equipment to handle the same amount of goods in a more intensive time
frame. According to Yeo, Roe and Soak [10], congestion on the port lanes can severely
affect a user’s loyalty to the port. Thus, competitive impact here expresses the damages of
congestion risks on the port image, which could be further observed through complaints
from the port’s clients, the loss of cargo or the increasing number of vessel calls canceled.
Normally, the P parameter, also called the level of detection (D) in this paper, refers to the
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ability of managers to detect the existence of one specific risk factor. A more visible risk
factor is a less dangerous one.

By doing this, a two-level parameter structure for experts to evaluate each congestion
risk factor is developed, in which likelihood(L), D and C are on the first-level, and CT, CC,
CI are on the second-level.

3.2.2. Definition of Input and Output Variables via Fuzzy Linguistic Terms

Utilizing the fuzzy belief rule base (FBRB) in [39], we constructed IF–THEN rules
where IF represents five risk parameters(L,D,CT,CC,CI) in Section 3.2.1 and THEN signifies
the risk status (R).

Considering subjective judgements are somewhat ambiguous and inexact in many
cases, it is better to use linguistic terms rather than numerical values when collecting
experts’ estimates of risk [20]. Following recent studies related to maritime risk [19,40],
this paper defined three linguistic variables for five risk parameters (L, D, CT, CC and CI),
respectively—see Table 3. Similarly, the risk status (R) could be described by three grades,
namely ‘Low’, ‘Medium’, and ‘High’.

Table 3. Corresponding linguistic variables of parameters and their meaning.

Level 1 Level 2 Linguistic Variables Description

Likelihood (L)
Unlikely Occurs less than once per year

Occasional Occurs sometimes, once every three months
Frequent Occurs at least monthly

Detection (D)
Good Possible to detect through regular risk checks

Normal Possible to detect through intensive risk checks
Poor Impossible or difficult to detect through intensive risk checks

Severity of
consequence (C)

Time impact (CT)
Low Average delayed days of ships/containers in port fewer than 3 days

Medium Average delayed days of ships/containers in port between 4 and 7 days
High Average delayed days of ships/containers in port exceeding 7 days

Additional cost (CC)
Low An additional cost/loss no more than 10% of the total cost

Medium An additional cost/loss between 10% and 50% of the total cost
High An additional cost/loss of more than 50% of the total cost

Competitive
impact (CI)

Negligible No vessel calls canceled; no complaints received; no loss of cargo

Moderate Some shipping lines reduce their port calls; complaints received; loss of
some goods

Critical Majority of shipping lines reduce their port calls; many customers lose
faith in the port and transfer their cargo to other ports

3.2.3. Degree of Belief of Risk Status Based on AHP and the Variation Coefficient Method

As a multi-input and single-output structure, it is expected that there are 243 (3 × 3
× 3 × 3 × 3) rules in FBRB. Take one of rules Rulet=i∗j∗k∗l∗m as an example, the IF–THEN
rule can be generally denoted as Equation (1).

Rulet=i∗j∗k∗l∗m :

IF Li and Dj and CTk and CCl and CIm,

THEN
{(

βt
1, Rt

1
)
,
(

βt
2, Rt

2
)
,
(

βt
3, Rt

3
)}
×
(
∑3

n=1 βt
n = 1

)
(1)

where Li, Dj, CTk, CCl , CIm(i, j, k, l, m = 1, 2, 3) represented experts’ subjective judgements
of five risk parameters, respectively, and βt

n denoted the Degree of Belief (DoB) to which
Rt

n is believed to occur.
As discussed earlier, βt

n can be calculated based on distributing contribution in terms
of weights of parameters in the IF part. That being said, the relative importance of each
level parameter needs to be determined. Here, we used the linear combination (i.e., the
comprehensive weight) of subjective and objective weight as the weight of the parameter.
An expert investigation based on AHP was conducted to acquire estimations of the relative
importance of the first-level parameter (L, D, C) and the second-level parameter (CT,
CC, CI). Five domain experts (detailed experts’ information refers to Section 4.1) were
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interviewed who were dedicated to ensuring the safe and efficient operations of the port
logistics system. The outputs are as shown in Equations (2) and (3) and were checked by
the consistency ratio (CR1 = 0.073 < 0.1, CR2 = 0.093 < 0.1),

u1 = (0.082, 0.670, 0.248) (2)

u2 = (0.649, 0.123, 0.229) (3)

By calculating the weight of the information contained in the parameter directly, the
coefficient of variation (Vi) could avoid the interference of subjectivity, thus obtaining the
objective weight [41]. Take the first-level parameter as an example, the calculation formula
of coefficient of variation was as follows:

Vi =
σi
xi

(4)

where σi represented the standard deviation of parameter i, xi denoted the average of
parameter i.

The weight of variation coefficient formula of each index was as follows:

v1 =
Vi

∑n
i=1 Vi

(5)

Based on the data of experts, as well as the Equation (5), the objective weights for each
parameter of the first level (with three decimal places reserved) were as follows:

v1 = (0.159, 0.422, 0.419) (6)

The comprehensive weight model calculating adopted the following formula was
as follows:

ωi = θ × ui + (1− θ)× vi (7)

where ωi denoted the comprehensive weight, θ was the proportion of subjective weight in
the comprehensive weight.

To achieve the best combination of the two kinds of weights, one realistic way is to
establish an objective function where the sum of the squares of deviations is minimized,
denoted as z [43]:

min z = ∑n
i=1

[
(wi − ui)

2 + (wi − vi)
2
]

(8)

The first derivative was found with respect to θ and set to 0, thereby obtaining the
optimal value of θ of 0.5. Therefore, Equation (6) could further be represented as:

ωi = 0.5× ui + 0.5× vi (9)

Then, synthesizing the data, the comprehensive weights of the parameters at the first
level were obtained (with three decimal places reserved):

w1 = (0.121, 0.546, 0.333) (10)

Similarly, the objective and comprehensive weights of the second-level parameter
could be obtained which were as follows:

v2 = (0.435, 0.203, 0.362) (11)

w2 = (0.542, 0.163, 0.295) (12)

Finally, the final comprehensive weights of risk parameters at each level were shown
in Table 4.
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Table 4. Weight of each risk parameter in the FBRB.

Parameter L D CT CC CI

Final comprehensive weight (wi) 0.121 0.546 0.180 0.054 0.099

With the above information, we could determine βt
n(n = 1, 2, 3) which are the sum of

the final comprehensive weights of all risk parameters with the “same” grade [34,40]. For
instance, the Rule3=1*1*1*1*3 can be described as follows:

Rule3=1*1*1*1*3:

IF L is Unlikely, D is Good, CT is Low, CC is Low, CI is Critical

THEN


(

R = Low, β3
R1 = wL + wD + wCT + wCC = 0.901

)
,(

R = Medium, β3
R2 = 0

)
,(

R = High, β3
R3 = wCI = 0.099

)
 (13)

In a similar way, the DoBs of the rest rules could be obtained. Therefore, the FBRB for
modeling congestion risk was established and is partially presented in Table 5.

Table 5. The partial FBRB for congestion risk assessment.

Rule No
Risk Parameter Risk Status

L D CT CC CI Low Medium High

1 Unlikely Good Low Low Negligible 1
2 Unlikely Good Low Low Moderate 0.901 0.099
3 Unlikely Good Low Low Critical 0.901 0 0.099

. . . . . . . . . . . . . . . . . . . . . . . . . . .
241 Frequent Poor High High Negligible 0.099 0.901
242 Frequent Poor High High Moderate 0.099 0.901
243 Frequent Poor High High Critical 1

3.3. Risk Ranking Based on the BN Technique and Utility Functions

Since the outputs still were distributed in FBRB, a BN technique with strong reasoning
ability was hence employed to aggregate all rules and simplify calculation. First, the
Directed Acyclic Graph (DAG) in BN was used to convert the fuzzy rule into a Bayesian
network diagram (see Figure 2), in which the risk status (R) was termed the child node NR
while five parameters were defined as parent nodes, NL, ND, NCT, NCC, NCI, respectively.
First, a fuzzy belief rule in FBRB was transformed and represented in the form of conditional
probabilities, denoted as [40]:

p(Rh
∣∣Li, Dj, CTk, CCl, CIm)(h, i, j, k, l, m = 1, 2, 3) (14)

where “|” shows conditional probability. Specifically, Rule 3 can be further displayed
as follows:

p(Rh|L1, D1, CT1, CC1, CI3) = (0.901, 0, 0.099) (15)

Then, the rule-based risk inference can be simplified as the calculation of the marginal
probability of the node NR, denoted as:

p(Rh) = ∑3
i=1 ∑3

j=1 ∑3
k=1 ∑3

l=1 ∑3
m=1 p(Rh

∣∣∣Li, Dj, CTk, CCl , CIm)p(Li)p
(

Dj
)

p(CTk)p(CCl)p(CIm) (16)

in which p(Li), p
(

Dj
)
, p(CTk), p(CCl), and p(CCm) were the priori probabilities of five

parent nodes, respectively.
Finally, to rank congestion risk, Risk Priority index (RPI) could be developed by

Equation (17):
RPI = ∑3

h=1 p(Rh)×UVRh (17)
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where UVRh was the risk utility value. This study employed UVR1 = 1
(
15); UVR2 = 32

(
25);

UVR3 = 243
(
35) [40].

Figure 2. The Bayesian network structure for port congestion risk.

3.4. Model Validation

For the sake of validating and demonstrating the application of the proposed method,
a real case study and sensitivity analysis is carried out in this paper. The former provided
a pragmatic basis for examining the feasibility of the model, while the latter proved the
theoretical robustness of the constructed model. The following three axioms shall be
satisfied if the proposed model is reasonable and robust [19,34,39,40,48]:

Axiom 1. The slight increase/decrease in the priori probability of each parent node
shall inevitably lead to the raise/drop in the posteriori probability of the child node and in
RPI value.

Axiom 2. The impact magnitudes of the subjective probability changes on RPI shall be
in accordance with their weight, i.e., a higher weight indicating more obvious changes.

Axiom 3. The influence created on the RPI through the variation of the probabilities of
evidence set shall be greater than that of any of its subsets.

4. Result and Discussion
4.1. Illustrative Case Study

To illustrate how the methodology can be implemented in actual risk situations, this
paper carried out a real case study on Los Angeles–Long Beach ports (LA–LB ports) in the
USA. With no less than 12 marine terminals, relatively completed infrastructural facilities
as well as a convenient inland connection, the LA–LB ports are the busiest container
trade gateways, which handle almost all the commodities from Asia to the United States,
accounting for more than one third of the container import volume of the country. However,
such concentration also makes the freight system in the USA more vulnerable to the sort of
congestion and delays the ports experienced in the COVID-19 pandemic. According to the
statistical data from the Southern California Shipping Exchange, as of 18 October 2021, the
total number of ships waiting to enter the two ports to unload was 100, a record high. The
congestion in the LA–LB ports has seriously aggregated the operation limits of the global
shipping industry and consequently hindered the efficiency of the overall supply chain.
Therefore, the LA–LB ports are regarded as a representative case by the author.

To acquire specific input information of risk factors listed in Table 2, we designed
a questionnaire and consulted five relevant experts who have more than ten years of
background experience in maritime research. In the questionnaire, experts were asked
to use the subjective probability distribution of the linguistic variables of each parameter
because their evaluation was not backed by objective data. Next, the arithmetic mean of
these primary evaluation values were input into the Bayesian network structure (Figure 2)
to calculate the necessary marginal probability through Equations (14) and (16) for risk
ranking. Additionally, Netica software was utilized to facilitate BN computation due to its
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ease of use. An example of EF_6 (“Interruption of railways/barges services”) is shown in
Figure 3.

Figure 3. Risk status of EF_6 calculated by Netica software.

According to Figure 3, it can be easily observed that any risk input with reference
to the L, D, CT, CC and CI parameters can trigger a change in the output result, which
facilitates achievement of an instant congestion risk assessment. Moreover, the expression
of the risk status of EF_6 can be ((Low, 0.165), (Medium, 0.361), (High, 0.474)). Therefore,
the RPI of “Interruption of railways/barges services” is calculated by Equation (17):

RPIEF_6 =
3

∑
h=1

p(Rh)×UVRh = 0.165× 1 + 0.361× 32 + 0.474× 243 = 126.899 (18)

The RPI of the rest of the congestion risk factors can be calculated in a similar way.
Based on the computed RPI values, we can rank all congestion risk factors, as shown in
Table 6.

Table 6. Prioritization of congestion risk factors in the LA–LB ports.

Risk Factor Code Congestion Risk Factors
Risk Status

RPI Rank
Low Medium High

EF_6 Interruption of railways/barges services 0.165 0.361 0.474 126.899 1
IF_1 Skilled labor shortage (dockworkers or warehouse workers) 0.24 0.332 0.428 114.868 2
EF_7 Shortage of truck-drivers/drayage truck 0.2 0.381 0.419 114.209 3
IF_2 Inefficient and insufficient port infrastructure/equipment 0.3 0.302 0.398 106.678 4
EF_5 Undeveloped ground access system 0.337 0.336 0.327 90.55 5

EF_11 Industrial action or strikes 0.324 0.37 0.306 86.522 6
EF_12 Adverse weather 0.348 0.37 0.282 80.714 7
EF_8 Chassis shortages, supply imbalances and dislocations 0.436 0.271 0.293 80.307 8

EF_13 Traffic accidents in port area 0.322 0.402 0.276 80.254 9
EF_10 Network security 0.308 0.423 0.269 79.211 10
EF_1 Cargo growth 0.48 0.227 0.293 78.943 11
IF_3 Lack of yard space or stockpile 0.396 0.326 0.278 78.382 12
EF_9 the reluctance of consignees to collect cargoes 0.451 0.269 0.28 77.099 13
EF_4 Directional imbalance of container trades 0.452 0.275 0.273 75.591 14
IF_6 Inconsistent hours across terminals 0.446 0.302 0.252 71.346 15
EF_3 Larger ships calling 0.388 0.377 0.235 69.557 16
EF_2 Vessel bunching 0.443 0.324 0.233 67.43 17
IF_5 Restricted documentation procedures 0.489 0.283 0.228 64.949 18
IF_4 Poor management on container stacks 0.457 0.322 0.221 64.464 19

Note: Gray: internal congestion risk factors; no color: external congestion risk factors.

4.2. Sensitivity Analysis

To examine the robustness of the proposed model, we employed the consecutive
method and cumulative method used by Nguyen and Wang [19] to conduct a sensitivity
analysis, respectively. First, we reassigned absolute DoB in the worst grade (i.e., frequent
occurrence, poor detection, time delay, highest additional cost and critical impact in port
competition) to 100% in the input nodes and reset after each time. Next, we raised the DoB
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of the worst grade to 100% without such a reset. All records regarding changes in DoB of
“High” grade in risk status as well as in RPI value are shown in Figure 4.

Figure 4. Sensitivity analysis of different input nodes.

Here, we still take EF_6 as an example. From Figure 4, it can be clearly observed that
the posterior probability of “R = High” increased from 47.4% to 75.8% and the PRI rose
from 126.899 to 189.18 after the DoB of “Poor” in node D was assigned to 100%. Moreover,
the impact magnitudes of the subjective probability changes in node D on the RPI (from
126.899 to 189.18) is larger than in other nodes (e.g., from 126.899 to 141.62). Therefore, it
could be concluded that the proposed model satisfies Axiom 1 and Axiom 2. In cumulative
adjustments, both the continuous growth in the DoB of “High” state and in RPI indicate
that the Axiom 3 is satisfied.

4.3. Discussion

This paper aims to fill the research gaps in the quantitative assessment and prioritiza-
tion of port congestion risk factors during the COVID-19 pandemic. Therefore, there are
three aspects of this problem which are addressed.

First, 19 risk factors causing port congestion were identified. Second, to precisely mea-
sure those risk factors and meet different decision-making requirements, we investigated
more risk parameters according to the features of port congestion during the pandemic.
Third, combining a fuzzy belief rule-based Bayesian network (FBRB-BN) with AHP and the
variation coefficient method provided a powerful tool to incorporate subjective judgments
to evaluate and prioritize congestion risk factors under uncertainty from incomplete risk
records. None of the 19 identified port congestion risks had the same ranking value (see
Table 6), and thus the applied method is considered feasible and functional. Meanwhile,
the proposed method made it possible to consider other congestion risk features instead of
just relying on likelihood and the severity of consequence. While results from sensitivity
analysis validated the robustness of the developed model, they also illustrated the effective-
ness of the five selected risk parameters in evaluating port congestion risk, i.e., any changes
in the estimations of each risk parameter directly led to the relative variation in RPI. As a
result, the port authority or government can easily obtain real-time congestion risk evalu-
ation and dynamic risk-based decision support after inputting or updating information,
thereby allocating limited resources to the most impactful risks.

The results of this study also contribute to managerial practices in the realms of
LA–LB ports. According to Table 6, the most significant factor for port congestion in the
investigated ports was “Interruption of railways/barges services”, followed by “Skilled
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labor shortage”, “Shortage of truck-drivers/drayage truck”, “Inefficient and insufficient
port infrastructure/equipment”, “Undeveloped ground access system” and “Industrial
action or strikes”. These prioritization results, on the one hand, were consistent with the
related congestion analysis regarding this port complex by Fan, Wilson and Dahl [6] to a
large extent, in which rail corridor constraints were considered more constraining than port
restrictions. On the other hand, it suggested that congestion in LA–LB ports was largely
associated with the landside system and the platform itself rather than external shocks
from the seaside interface, such as unanticipated surges in import cargo volumes or vessel
bunching. In other words, the bottleneck of port operations has been transferred to the
yard side [24] and the inland transportation system rather than exiting on the quay side
as was usual situation decades ago. This is consistent with the current situation of the
container port systems in the USA. Furthermore, compared with the conclusion obtained
from Bolat, Kayisoglu, Gunes, Kızılay and Ozsogut [16], the rankings of “Skilled labor
shortage” and “Shortage of truck-drivers/drayage truck” rise. This is because of the extent
of the workforce shortage during the pandemic is higher than in any other period, while the
movement of goods to keep supply chains running still depends on human labor. Therefore,
if some specific and radical decisions such as vaccination campaigns for protecting the
workforce are added, the identified congestion risks may be mitigated or prevented. Since
risk mitigation/control strategies are not included in this paper, this part is omitted and
can be further discussed in the future research.

A major limitation of this paper is that all these values (including final comprehensive
weights of each risk parameter and risk prioritization) are obtained from the synthesis of
experts’ judgements. Consequently, the usefulness of the result is still heavily hindered by
the subjectivity. For instance, during the research, it was found that the worse the detection,
the higher the ranking. This is probably a consequence of the comprehensive weight
of parameter D being the highest, which was calculated based on the experts’ opinions.
The experts interviewed stressed the importance of visibility in the port congestion risk
assessment. However, these problems could be solved if we consider objective statistic
data to calculate the weights. In addition, it is also noteworthy that the weights of each
risk parameter shown in Table 4 only represent the case of LA–LB ports. In fact, the value
of the weight might be changed for each case study, its context and respondents. There-
fore, the developed fuzzy belief rule base (FBRB) in this paper needs to be reconstructed
accordingly and appropriately verified when the proposed methodology is applied to a
new investigated scenario, so as to ensure practical and non-biased belief functions which
fit the newly investigated ports. Additionally, it is noteworthy that the developed model
is unable to analyze the link between internal and external risks. When one risk factor
is solved, whether other risks are sorted or not could also be an interesting direction for
future research.

5. Conclusions

Affected by the COVID-19 pandemic, for the whole maritime system, especially the
port logistics system, there exist various types of uncertainties. The frequency and severity
of port congestion are increasing, due to various risk sources. Therefore, it is necessary
to study congestion in ports and create a flexible and effective method for assessing port
congestion risks.

The main theoretical contribution of this paper lies in the innovative analysis of the
risk of port congestion during the pandemic. In view of the lack of related research and
objective data, a clear and well-reasoned congestion risk concept was defined and coupled
with congestion cases to identify existing risk factors contributing to port congestion. Then,
we developed a novel congestion risk model with a coupled method (i.e., FMEA, a Fuzzy
Belief Rule-Based Bayes Network, AHP and the variation coefficient method), in which the
extended RPI provided a basis for obtaining input information and risk prioritization; FBRB-
BN allowed to expression and tackling of vagueness and uncertainty in expert judgments,
thereby achieving risk inference. Additionally, AHP and the variation coefficient method
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were utilized to establish a reasonable and robust FBRB. The proposed method provides
the possibility of comparing the congestion risk factors of different perspectives in one
single framework.

The illustrative example and a scientific process using the sensitivity analysis proved
the feasibility and reliability of the newly proposed model. As far as the practical contribu-
tions are concerned, for LA–LB ports, “Interruption of railways/barges services” is the most
significant one, followed by “Skilled labor shortage”, “Shortage of truck-drivers/drayage
truck”, “Inefficient and insufficient port infrastructure/equipment”, “Inefficiency of inland
transportation system” and “Industrial action or strikes”. The results could also help the
managerial practices in the realms of the investigated ports.

To overcome the limitations of the paper analyzed in the discussion part above, on the
one hand, collecting objective statistic data for calculating the weights of each parameter
will facilitate the accuracy and usefulness of the model. On the other hand, in future
research, the proposed method can be applied to and adapted to other ports or scenarios
to test its feasibility in a wider context. Additionally, a risk mitigation/control strategy
or the analysis of the link between internal and external risks may be other prospective
research directions.
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